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ERRATA

Page Line

12 11 Eq. 3 should read Eq. 4

15 10 ... unknown, but affirmative answer is expected.
should read ... unknown.

30 9 For R (J, i ) read Rn (j)

32 last The words ... reconstruction of should be followed by:

I(tn) by R(tn)

35 last For S.=(-4, -2; 1) read S,=(-5, -2, 1) .

36 6 For Ave. of Both (-1. 25) read Ave. of Both= (-1.75)

36 12 For ... from(-4) to (-2.5) read ... from(-S)to(-1)

36 last For (-2) read (-2.5)

38 is Note: Equation 7 is only an approximation obtained by
assuming an error free estimation of level sets. Further
work currently in progress considers level set errors in
addition to the others, and it indicates that the inverse
dependence upon J given by Eq. 9 is optimistic. The, error
probably decreases more slowly with increasing sample size.

38 last For ZE(I n)i ra" Z E( (Ini
i,k ilk
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ABSTACT

A procedure for optimisation tf a class of binary communication sys-

nos is py'.oqcntod and applied. The message set or transmitter input is taken

to be a real-valued sample sequence from a&stochastic process with discrete

parameter. The transmitter may be any time-varying, nonlinear operator

with domain of the real valued input and ran$* to the binary numbers. The

transmission medium or noisy channel linking the transmitter and receiver is

to be characterised by the conditional probabilities of all possible received

binary sequences given any transmitted sequence. The receiver may be any

real-valued, time-varying, no' near operator on the received binary sequences.

x..20 2 .l. 4s wzaau 05UAt f JhW25. $~WSWU des-ftett i W.~iyr W. -M FUsM:

error criterion, which is taken as the statistical average of a loss function,

S, of the difference between transmitter input and receiver output; the func-

tion ý is always taken as almost everywhere differentiable; and additional rI

assumptions such as strictly increasing for increasing magnitude of its argu-

ment and bounded away from minus infinity, are imposed when they lead to

interesting results. This restricted class of functions ý will be denoted by

by # .

The optimisation procedure we develop is much like one proposed by

S. P. Lloyd of Bell Telephone Laboratories for use in noiseless optimum

quantisation schemes and can be so applied. Results, consisting of necessary

conditions that the transmitter and receiver or quantiser and Interpolator must

satisfy, can be obtained for many members of the, family of loss functions, •,

referred to above. In particular, the choice of a.quadratic loss, 4(x) = x2

is explored in some detail.

-ii-



TR399

The optimisation conditions obtained are discussed and the relatlonship

between an optimum communication system and a delta modulation system in-
Z97A ;_, showr,

dicated, We -m s ab!. -_•_ obo thatýfor the quadratic loss function and any noisy

channelsa delta modulation system is an allowable representation of the optimum

binary system. -.__- ... s" s's_-- . ,"'W a a Ip • ,. . ... '

we can prove t t bove conclusion also obtains for the class 0 of loss

functions, ý , iatiafyi

(el)•(s?> - co if andonlyif sl '> z.2

Explicit design examples are en provided in addition to a discussion of the

possibilities of automatic desi via application of digital computers.

W.-oL..... b, di essiag.reliminary results on. an extended digital

communication system model av 7  areas for further research aA-IL-

A U
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CONDITIONS FOR OPTIMUM DIGITAL, COMMUNICATION

WITH APPLICATION TO DELTA MODULATION

by

Terrence Fine

Division of Engineering and Applied, Physics

Cruft Laboratory, Harvard University
Cambridge, Massachusetts

I. INTRODUCTION AND BACKGROUND

This report attempts to present a method of digital system optimization

by development and application. The optimum communication system, which

we shall synthesize by the determination of necessary conditions for design,

will be seen to possess, under certain restrictions, a representation, as a

delta modulation system. Before proceeding with a more precise approach

to this problem, let us establish a motivational background by considering

delta modulation.

The delta modulation system as proposed in 1946 is sketched in. the

block diagram below. The transmitter possessed a feedback loop which inte-

grated the binary transmitter output and compared.the result with the, current

input. According as the input, 1n , at the input time, tn ,v was greater or

less than the feedback value, Ln , the transmitted output, an , was in one

or the other of its two states. For convenience, the two transmitter output

states will be taken as plus or minus unity, respectively.

"-I-
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rPto

Ln •[Integrator

D 1I- L ; Dn' D(tn) ; sn slgnum Dn

n-I n
Ln= I m ; -a'n an ; Rn= sm

m -I11

DELTA MODULATION SYSTEM

The channel, which was taken to be noiseless, provided the input to

a receiver which then integrated this input to generate its output. Thus, the

receiver output was similar to that of the transmitter feedback loop, and the

transmitter output served to correct.the receiver output insofar as it exceeded

or fell below the transmitter input. A common supplement to the receiver

indicated above was to follow its output with a band-pass filter of bandwidth

equal to that of the input message set.

The system described above, taken together with the one modification

of replacing the single integrator by a double integrator to achieve a better

tracking response, represents the design state of the art until recently.
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Optimization adjustments with respect to intelligibility or noise power criteria

were made for the most part by experiment. The existing analysis was either

very qualitative in nature or attempted to determine properties of the error

spectrum for the single or double integrating modulator. Mention of some of

the representative work in this domain will be found in References 2 through 6.

Experimental results that were available indicated that the delta modu-

lator for speech inputs was inferior to pulse code modulation at moderate levels

of fidelity and above. This led us to consider the possibility of generalizing the

current system and optimizing the more general system assumed in order to

make it w! r(_ • to pulse code modulation. The variations that were attempted

were to remove the constraints that the receiver must be like the feedback

loop and that both of these devices need be integrators or even linear operators.

We permitted the receiver and feedback loop to contain general nonlinear

operators, including integrators as special cases. Then we successfully

attempted to derive the relations governing the optimum selection of these

functionals with respect to some class of criteria.

In this report we should like to move the optimization problem one step

further back by removing the restriction that the transmitter be representable

by a feedback configuration. We should then like to determine the conditions

under which such a configuration will be optimum and what its properties must

be, if it is optimum. We shall also take the communications channel to be

noisy and later specialize to the noiseless case. The results we derive will

be in the form of necessary conditions that the components of the optimum

communication system must satisfy, and the requirements for sufficiency

will be only implicitly stated.
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It should be mentioned that our results were partially anticipated by

S. P. Lloyd [1] and J. Max [7] in connection with the quantization problem.

The approach we employ was motivated and obtained independently from that

of Lloyd, but was first stated by him in a similar form. We have learned

from Lloyd's unpublished exposition.
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II. SYSTEM MODEL

A precise description of the binary communications system we wish to

optimize ind discuss is summarized in the diagram below, and explicated in

this section. Possible extensions of this model will be considered in Section

IX.

Transmitter Channel Receiver
5sn R

In S gn R
n g 9 V L I -) 11 = R R

= g(InIT-I = S(s) R R(sn'-

With reference to the figure given above, we take for the input message

or signal set (represented by I) a stochastic process with a discrete time

parameter, tn , stating the time of occurrence of a real valued input random

variable, I n The multivariate probability distribution functions that describe

this stochastic process are assumed known.

The transmitter operates on a sequence of message inputs, T , to

produce a binary output sequence sm . A superscript bar denotes a sequence

extending into the past with most recent member indicated by the subscript.

For example:

TIn In In In -.I I ... In -i+ l 1

where the positive integer i may be arbitrarily large.

The requirement that a communication system be binary implies that

the transmitter output sequence, sm I be composed only of binary valued

elements, which for definiteness we take to be plus or minus unity. It is

"-5-
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important to note that the output binary sequence is of the same length (same

subscript) as the input sequence; without loss of generality we may neglect

conwideration of the physical delay in the transmitter operation.

We represent the transmitter by some function g with domain equal to

the range of the input In and range consisting of only plus or minus one, or

on The function £ will depend upon the prior input sequence, In-I , for

its explicit form, this being an alternative statement of its functional depend-

ence upon the entire past of the input.

S n = g (In I In-I )(2)

The point to be emphasized is that upon the receipt of the input In a binary

output an is generated in a manner which depends upon the past history of the

input process.

In an actual system, the output of the transmitter described above

would serve as the input to a pulse modulator whose output would in turn be

fed into a communications channel. At the receiver a distorted version of the

modulator output, produced by random and deterministic characteristics of

the transmission medium, is transformed by the demodulator into another

binary sequence, *n' . The effects of the deterministic channel distortions

may, in principle, be completely eliminated, leaving only the random distor-

tions of the so-called noisy channel. In general, the terminal characteristics

of such a noisy channel can be described by the conditional probability function

for an output sequence, sn' given an input sequence, n and we denote

it by P ( sn n



TR399 -7-

The receiver operates on the received sequence, an' , to produce a

real valued output sequence Rn . We assume that these sequences are of

equal length or have the same subscript. As before, there is no loss of

generality attendant upon the neglect of physical time delays in the actual

system.
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III. STUDY OBJECTIVE AND FORMULATION

To design the very general binary communication system just described

so as to optimize its performance in some manner, requires a stated perform-

ance or system error criterion. Such a criterion maps any transmitter and

receiver functional pair into a real number, and the convention is adopted that

smaller numbers represent preferable systems. An appropriate and generally

useful class of criteria employs the difference between system input and output

as the error variable and should be used to judge the overall system, rather

than its individual components. The error variable, In - Rn , is then

weighted by means of a loss function ý(In - Rn) chosen in accordance with

some preconceived notions as to what constitutes a significant characteristic

of behavior (e. g., we may lightly weight small errors and ".eavily penalize

large ones).

By far the most common selection for ý(x) is the quadratic function

x2 and a distant second might be I x I . However, for the moment we take

$ to be almost everywhere differentiable and bounded away from minus in-

finity. Finally, we observe that, by the hypothesis of a random process input

and a noisy channel, the input and output and, therefore, their difference, is

a random variable. This requires us to average $(In - Rn) over all inputs

and noisy channel outputs to obtain an overall error measure or a mapping of

transmitter and receiver independent of specific inputs and channel noise.

System error = E( 4(In - R n) ) where E( I ) is the statistical ex-

pectation; $ must be chosen so that this quantity exists finitely.

"-8-
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For any particular error criterion in the above class we wish to deter-

mine the optimum transmitter and receiver, given the statistical description

of the message process and the channel. In order to accomplish this objective,

we will first represent the transmitter and receiver more explicitly.

In particular, we are interested in the inverse image of a plus one

transmission a'n = I ) with respect to the mapping induced by the transmitter

function, g. From Eq. 1 of the previous section the inverse image is a set

of input values, J+ given byn g
+n l-n-1)= Ing In I -n-)+I

The design of a transmitter corresponds to a selection for the point set 1+
n

with the convention that we transmit a plus one, if I falls in f + and a minus
nn

one, if I lies in I , the complement of +n with respect to the real line.
nn In

The receiver design consists of the specification of a real number for

each possible received sequence, sn although only the most recent mem-

bers of the received sequence may actually affect the choice of a receiver

output; we then say the receiver has a finite memory. If we assume that the

receiver possesses a finite memory of length N , then we need only specify

2N receiver outputs, Rn ( - ) It may be noted that using a finite receiver

memory requires the specification of initial conditions to make the problem

physically definite, but we need not explicitly evoke such a set of conditions

in our present work. Finally, we take the memories of the transmitter and

receiver to be of equal length ( i equals N in Eq. 1 of the second section).
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IV. OPTIMIZATION PROCEDURE

In this section we shall determine necessary conditions that f + andn

the set {Rnj must satisfy, if they are to yield a minimum system error.

Lack of sufficiency will arise, not from the non-existence of a minimum for

the system error, but from the possibility of several solutions to the necessary

conditions. Sufficiency is then obtained by checking all of the solutions to the

necessary conditions by means ol the value of E(ý( In - Rn) ) , or the system

error, that they give rise to, and then choosing that solution yielding the

minimum overall error.

The development of the necessary conditions for an optimum design

proceeds in three stages: (1) Assume a set of receiver outputs Rn( '-n') as

being given and find the optimum point set fn for this choice, (2) Assume

the point set I n as known (and, therefore, In , also) and find the optimum

receiver outputs corresponding to this transmitter design. (3) Using the

interrelated system design equations of ( 1 ).and (2), solve them simultane-

ously to find the jointly optimum system design. This general procedure is

quite analogous to the minimisation of a function of several variables in the

calculus; the optimum value of each variable assuming all the others constant

is found, and then all of the conditions are solved simultaneously for the

actual minimum or stationary point.

The point set I is determined by the requirement that the error re-n

sulting from transmission of a plus one should be loss than, or equal to that

resulting from transmission of a minus one whenever I falls in the sot A

The transmitter is aware of the actual value of the input, but possesses only

imperfect knowledge as to the effect of a transmission at the receiver; the

-10-
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channel noise acts to render the receiver output into a random variable with

a distribution dependent upon the transmitted sequence. Thus, the error we

wish to minimize is an error averaged over all of the possible, initially given,

receiver outputs. Our discussion is then summarized by

I CnJ+4=='E[$(I - Rn (n ))Jin+]<E[ý(I"- R(n'))} H ] ()

where

on j n = ; ten=1 {n-
+aa

We digress briefly to introduce a representation for the set I an a

union or sum (as the components are disjoint) of closed intervals, with closure

being guaranteed by the presence of the equality sign in the above inequality.

In+ =U [L , Lvi] with Loi(Lv. (2)nii o

We should like to find a necessary condition that the end points of the

intervals in the above union must satisfy. Observe that In being the com-
+

plement of I , consists of the open intervals adjacent to the closed intervalsnI
of I + . Thus, for inputs slightly below the left end point of any interval in I +

n n
or slightly above the right end point of any interval in I we have that a minus

n
one transmission is optimum or that the direction of the inequality in Eq. 1 is

reversed. The assumed continuity of $ and the reversal of the inequality as

the input is varied about the end points assure us that the end points of the in-

tervals in either I + or 1; (and, excepting ± co , they are the same) must
n n

be those real input values for which equality obtains in Eq. 1! More concisely,

we have

E[(L-Rn( -n]=E[(L- Rn(7')ln'] with L-Loi or Lvi .n n n n(3)
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Not all of the real roots of the above equation necessarily correspond to

the end points of an In interval, for only those points of equality that mark a

transition in the direction of the inequality I are of significance; this is, then,

only a necessary condition for the optimum transmitter given the receiver. If

both sides of the inequality 1 evaluated at the point L , which is a solution

of Eq. 3, do not have the same slope, or derivative with respect to In at the

point L , then the direction of the inequality 1 undergoes a reversal at the

point where In equals L . Thus, a condition that guarantees a transition

in the inequality for a root .L of Eq. 3 is

E(-'(L-R ) () )/E (ý) • (4)n sn) n n n n

We should mention that the new condition provided by Eq. 3 is sufficient to

guarantee a change in the direction of the inequality 1, but not necessary;

equality may obtain and L still be a point of transition, because it is also a

point of inflection. We shall discuss the properties of these results more fully

in the next section.

If we now fix the transmitter design and turn to the receiver, we note

that the receiver knowing the input statistics, the transmitter design, the

channel noise statistics, and the received sequence can determine the dittri-

bution function of the input conditional upon the received binary sequence. The

receiver must then process this distribution function to yield that number

which results in a minimum system error. That is, we must:

minimize E( (In - Rn)Ie-_) . (5)
Rn

The conditional expectation has an integral representation employing the

conditional distribution function for the input given the received sequence.
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A necessary condition that the number Rn must satisfy to minimixe the

integral can be obtained from the calculus and is:

-CO 4 x-R)Px> (6)

Interchanging orders of differentiation and integration, we have:

CO

S ý'(x- Rn)dP[x > In i 'n'] = 0 . (7)

-0D

The above equation rewritten more compactly yields the necessary condition

that determines the optimum receiver for a fixed transmitter.

EC'(1n- Rn) I n'] 0 (8)

The final step in an actual optimization problem would be to search

through the solutions of both of the derived necessary conditions Eqs. 3 and 8

to find that pair resulting in the absolute minimum system error. It may be

possible to solve this problem in a closed analytic fashion, but this is generally

the exception. More commonly, we would be driven to some iterative procedure.

In the next two sections we shall indicate some conditions under which

there is only one real L solution to Eq. 3; 1 is then a single semi-infinite

interval. In such a practically impoitant case, the iterative procedure might

proceed by first assuming a trial value of L and using it in Eq. 8 to determine

the various receiver outputs. With the calculated receiver outputs we can turn

to Eq. 3 and determine a check value of L • If the check value is lower than the

trial value of L , then the next trial value should be decreased from its original

magnitude and vice versa. This particular interative procedure is only meant as

an illustration and is only known to be applicable in the examples to be dis-

cussed shortly where L is unique.
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V. IMPICATIONS OF THE DERIVED NECESSARY CONDITIONS

Equation 3 for the transmitter design depends upon the actual input

process only insofar as Sn.- is concerned and in no other way. We have the

direct conclusion that the end points of the intervals making up 7 n depend only

Upon ;n.l ; therefore, In is a functional only of 5 n.1 , and, finally, g is

also only dependent upon the past of the transmitted sequence. This argument

produces the interesting conclusion that the optimum transmitter does not

utilize the fully available past of the input, In- 1 , but only the transmitter

output derived from that input sequence, sn.l

If for the lose function, ý , we use the very common quadratic func-

tion, we can rewrite Eq. 3 by utilizing the observation that in Eq. 3 L is just a

real number and can commute with the conditional expectation operator. This

leads to

L 2- LE[Rn( )Isn+]+E[Rn Is+]=L -2LE[Rn(n')ISn-]+E[R 2 s-].

Eliminating the L terms and solving the resulting linear equation leads to

the following explicit expression for L :

L(sn- 1 E[R 1Js+]-EER 2 !S7i (2)
n n n n]

The significance of Eq. 2 is that for any assumed receiver outputs there is one

arid only one solution to Eq. 3; In is just a semi-infinite interval.

The above conclusions for the quadratic loss function lead us to the

realization that an alternative block diagram for our binary communications

system can be given utilizing a feedback loop.

-14-
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n +I out n n' Rn

Ln

Dn= In - Ln

L L( an-1) "n = signurii Dn

Ln = L( nl)

If In falls in the semi-infinite interval with lower end point, of Ln then Dn

is positive, 5n is plus one, and we are classifying the inputs by means of the

proper form of point set, I+ . The feedback loop provides precisely then

Sn- 1 needed to generate correctly the lower end point of 1n
This feedback device is the generalization of the delta modulation sys-

tem investigated by others, and ourpresent work shows that the delta modula-

tion configuration leads to a quadratically optimal, binary communication sys-

tem in the presence of an arbitrarily noisy channel ! Whether or not this result

(of a unique solution to Eq. 3 of the previous section) holds for a variety of loss

functions is at present unknown, but an affirmative answer is expected.

The necessary condition for an optimal receiver given by Eq. 8 of the

previous section is a reasonable one. The information at the receiver concern-

ing transmitter input and channel noise statistics as well as the transmitter deo-

sign and the received binary sequence enable it to determine the conditional
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probability of the input given aU of this information. The receiver then selects

the "best" single estimate ol the input from this distribution and the given loss

function. If the loss Junction is quadratic, one can readily show that the receiv-

er operates by taking the conditional expectation of the input, given the received

sequence as its output; the familiar mean as the solution to the minimum vari-

ance problem. In a similar vein, if the loss function is -taken as the absolute

value of the error variable, then we find that the optimum receiver has as its

output the median of the conditional distribution of the system input given the

received binary sequence. This result is also well known.
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VI. NOISELESS CHANNEL

An important specialization of our results is to the case of the noise-

less channel or the channel in which the received binary sequence is identical

with the transmitted sequence, a. . The transmitter design relation can now

be appreciably simplified by the observation that the receiver output given the

transmitted sequence is a degenerate random variable or constant, and, there-

fore, the expectation is superfluous. Equation 3 of the optimizationý section

reduces to:

If we generalize from the quadratic and absolute value loss functions to a class

of p , , which satisfies

a.e. differentiable; Z II > Iz 2.1j (Zl )>4(z2 )>-OD (2)

then the unique solution of Eq. 1 becomes:

I - + 1 -
L = P (sn) + XR 'n (n- L ("i n (3)

Equation 3 can be verified by use of Eq. 2 and substitution of Eq. 3 in Eq. 1;

uniqueness follows from the strict inequality in Eq. 2.

The essential point is that, for the noiseless channel and an important

class of loss functions, classification of the input, at a particular time, is

only based upon whether it is larger or smaller than. a particular number, L.

This is the same conclusion that we reached for the quadratic criterion and

the noisy channel, and, therefore, the representation of the optimum system

as a delta modulation system is again possible.

The specialization of the receiver relation is trivial and is simply:

E( 4'(In - R-) 0 (4)

=1'7-
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VII. CALCULATED DESIGN EXAMPLES (NOISELESS)

Equations 3 and 4 of Section VI provide us with conditions that must be

satisfied by the optimum transmitter and receiver, respectively. These equa-

tions are not difficult to implement, if we are provided with an analytically

tractable conditional distribution or density function for the input process.

Unfortunately, it is far from common that the multivariable distribution func-

tions for an input stochastic process will be given in terms of finite combina-

tions of elementary functions, and this makes calculations with such functions

laborious. Two exceptions to this dictum will be examined below, and they

represent opposite ends of the range for dependence between members of a

2sequence. The loss function ý(x) will be taken to be quadratic or x

Independence

We first assume that the input stochastic process consists of a sequence

of independent, identically distributed random variables with common density

function p (I) . Then from Eq. 4 and the quadratic loss we have, after differ-

entiation and separation of terms

Rn (s n = I ) = E ( In I an = 1 ) ; R n (sn ="I )=E (In [s I ) . (I

The receiver output should be the conditional mean or the mean of the input

distribution as known at the receiver. The mutual independence of members

of the input sequence and the given density function allow us to rewrite Eq. 1

by employing the integral representation for the expectation

-18-
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Ln

$xp(x) dx Y xp(x)dx

Rn(anf 1) . . Rn(Sn=-l) Ln (2)

Y p(x)dx Y p(x)dx
Ln -00

kn , is the as yet unknown position of the transmitter feedback loop

output, and it can be found from Eq. 2 above and Eq. 3 of Section VI as follows:

COh

Yxp (x) d YS xp(x) dx
Ln -co

-L=n = +-O (3)
OD Ln

Y p (x) dx Y p(x) dx
Ln -CO

If we have a specific p (1) in mind, we may proceed to solve the

transcendental equation given by Eq. 3 for Ln and then use Ln in Eq. 2 to

determine the two receiver outputs. For example, if p (I) is the exponential

distribution for positive I , the integration can be carried out, and Eq. 3

yields:

L
exp(-Ln)= I - or 'l.6 .

Having found the unique setting of the feedback ioop, we may return to Eq. 2

and calculate the two receiver outputs

Rn(sn= 1)=2.6 ; Rn(sn= 1)= .6
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Further calculations are straightforward and we summarize their results:

Prob(sn= I) = .2 ; var In= I ; E( (In- Rn)2) = .36

This completes the design of the optimum system for such an input process,

and describes its performance.

Complete Dependence

The case of complete dependence in chains of length M and inde-

pendence between successive chains can be treated fairly directly, because

of the relative simplicity of the resulting distribution functions. We assume

that II through IM are equal to some random variable I with density

function p (I) Then the transmitter and receiver design for the first mem-

ber of the sequence, I1 , are precisely as given in Eqs. 2 and 3 above. Ar

an illustration of how the problem proceeds, we give the design equations for

the system concerning Ia and assuming that sa = 1 . Differences occur in

the interval of integration and in the denominator, due to the change in the

conditional density function

$p(I2)00Po z if 12 ti L 1

p(I2 1I $ = 1 ) p(I) dl (4)
LI

0 if 12 < L1

The design equations then become
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L
2

xp(x) dx $ (x)dx

L2  LIR 2(is zz) * 2 (s 2 =--, 51=1)- ....

Y p(x) dx Y p(x)dx

L 2  LI

(5)
OD L 2

Yxp(x) dx Y xp(x) dx
L2  __ __ _

2L (s 1 = L)2 + L2

S p(x)dx S. p(x)dx

L 2  L1

The process just indicated is then continued until the Mth step, after which

it recycles.

It is possible to apply Eq. 5 to the exponential distribution discussed in

the case of independence. If one does so, one straightforwardly finds after

integration and the solution of a simple transcendental equation:LPa1 = 1) -! 3.20;

R 2 ( 1 = s2 = )=4.20 ; R 2 (s = -s 2 = 1)= 2.20 ; Prob(s 2 =11l=l)=.203;

var 2 I ; E( (12 - R2 )2 1 .32 We notice that the second step

provides little improvement in performance over the first step, under the hy-

pothesis that aI = I . The continuation of this example to investigate the other

alternatives is simple, but involves repetitive elementary calculations.

As another illustration we might consider that the density function,

p (1) , was uniform over some range H . We would then find that LI occurred

at the midpoint of the range, and the two receiver outputs, R, (sI = 1 ) and

R, (a I = - I ) , occurred at the midpoints of the right and left halves or at
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the 3/6 and 1/4 points of the full range, respectively. The transmitter con-

tinues operation by successively halving the remaining range into which I is

known to ,ave fallen, and the receiver output is taken at the midpoint of the

reduced ranga. Finally, the Mth digit asserts that L is in some interval of

length H/ZM and that the receiver output is at the midpoint i this interval.

The system performance may then be readily calculated at each step, and we

summarize the results that obtain just after the jth binary digit has been re-

ceived: var I = H 2/12 ; E((Ij -R) 2  ej)=H2 /12.2 2 J ; Prob(sj 1 Ii):l/2.

These results for .1 equal to unity also provide the solution to the case of

independence between inputs when the input distribution is uniform.

p(I)

1

"__ L2 s~l•') •L(sl 1x) R2 (slm1, s'=l)
-- R 1(e1='l) "L R1(s1 u1)H
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The case of dependence that we have discussed above corresponds to a

process of M-bit pulse code modulation (PCM) - The input value I is

represented by a binary sequence M in length, from which its magnitude can

be reconstructed. This particular quantization procedure is sometimes re-

ferred to as programmed PCM



TR399

VIII. COMPLEMENTS FOR DELTA MODULATION

The results described in the previous sections have been examined in

greater detail than hitherto presented, particularly with regard to the proper-

ties of a delta modulation representation and a noiseless channel. In this sec-

tion we should like to discuss briefly two results that follow from our analysis,

as well as to indicate our application of a digital computer to obtain additional

conclusions.

We notice from Eq. 3 of Section VI that the optimum transmitter feed-

back loop is linearly related to the chosen receiver. If for various reasons,

including engineering practicality, we wish to select a linear operator on the

received binary sequence, or, alternatively stated, a linear time-varying sys-

tem, for the receiver, then we can show that the optimum transmitter feedback

loop should be chosen to be the same operator restricted to the past of the

received sequence. To prove this statement, take the following representation

for the receiver:

n

Rn (n)= snm m (1)
m

Now the expression for the optimum transmitter feedback loop operator,

Ln(an-I) , is given by:

ZLn(S-l)-Rn( n-- n -1 )+Rn(sn 1'' 'n-l (2)

Substitution of Eq. I into Eq. 2 yields the optimum solution for Ln

n-1

Ln6;-...l) a. am (3)

m

-24-
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Equation 3 proves our conjecture concerning the relation of the optimum trans-

mitter to the receiver constrained to be a linear operator.

Equation 3 also provides a justification, in part, for the assumption

made by the early designers of delta modulation systems that the feedback loop

element should be the same as the receiver. The subsequent refinement by the

addition of a band-pass filter at the output of the receiver was motivated by an

attempt to interpolate between samples and does not appear in our discrete time

analysis, which is concerned only with the samples themselves.

A further result is an approximation to the transmitter design equation

based upon the hypothesis that at a given time a positive transmission is as

likely as a negative one. This assumption implies that we may rewrite Eq. 2

above as follows:

Lt5 (a)-=1(Rn( i n ) 'I. I (4)n nln n n -l' 4

If, in addition, we assume a quadratic loss function so that the optimum re-

ceiver is a conditional expectation itself, then Eq. 4 becomes

Lnl8n.) = ElIn n.) • (5)
n (an-l (n n-l 5

The significance of Eq. 5 is that the transmitter design equation no

longer depends upon the receiver design, and we may solve directly rather

than iteratively. Thus, by assuming a property of the resulting optimum sys-

tem, which is known not to be universally valid, we have simplified the analy-

sis leading to the optimum design. This approximation is essentially that we

will transmit at the maximum information rate with an optimum binary corn-

munication system as we have defined it; this statement, however, is only

occasionally correct, and its truth depends upon the nature of the input process.
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The maximum information rate approximation referred to above im-

plies a very special structure for the input stochastic process, if it is to hold

exactly. In detail it requires that at the time in question the conditional mean

of the input distribution be equal to the conditional median of the input distri-

bution. If the probability distribution function for the input at a given time con-

ditional upon the past of the transmitted binary sequence is symmetric, then

the conditions are met and the approximation is exact. An example of such a

process would be the uniformly distributed dependent case of Section VII or

any symmetrically distributed input process of independent random variables.

The multivariate normal process does not satisfy the conditions we have

suggested as establishing the exact validity of our suggested approximation.

However, computer studies of selected exponentially correlated and band

limited normal processes indicated that the error made in applying our approx-

imation to the determination of L was less than 15%.

Computer studies based upon the results for a noiseless channel and

quadratic loss function have been carried out with the following objectives:

(1) Determine the feasibility of the iteration scheme outlined earlier. (2)

Judge the accuracy of the maximum information rate approximation discussed

above. (3) Provide an automatic design procedure for optimum binary com-

munication systems given only input data and not input statistics. (4) Effect

a simulation procedure for use in investigating system performance when the

input statistics preclude reasonable analytic solution. Valuable conclusions

were obtained in all of the above-mentioned areas but the last. A procedure

is available, but the results of its application are inconclusive.
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The iteration scheme proved practicable on an IBM 7090 when used in

conjunction with appropriate statistical estimators. Input information. was

provided in the form of independent sequences of fixed length and arithmetic

average estimators were used to provide the needed conditional expectations.

The iteration process will always converge in a finite number of steps, the

number of steps being bounded by the total number of independent sequences ,

providing the input information. This overall procedure yields a valuable

means of automatically designing an optimum binary communication system

directly from measurements on the message or input process. The appendix

contains an illustrative example of the calculational process alluded to above.

It was also possible to estimate the optimum system for an input

process with known statistics, such as multivariate normal, by first simu-

lating the input process and then proceeding as above. The optimum system

could then be tested and its performance evaluated by operating the simulated

system on additional members of the message set and comparing the system

output with the known input. However, the conclusions so reached have not

been particularly fruitful. It is intended to pursue this work somewhat further

by processing recorded quantized speech provided by the Bell Telephone

Laboratories in order to determine the merits of the system we have devised

with respect to potential speech communication applications; this investigation

will probably be carried out for the quadratically optimal system. We hope that

the practicality of the simulation and automatic design procedure we have

developed for the design of optimum binary communication systems will serve

as an inducement to application even in those instances where a fully analytic

solution is very difficult.
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IX. EXTENSIONS TO THE BINARY MODEL

The bulk of this report has been devoted to a discussion of what we

refer to as a binary communication system, and most of our work has been in

this direction. However, it is possible to treat the more complex model of an

M-ary digital system employing reconstruction delay by the methods we have

developed, and we shall indicate the procedure in this section. It should be

stated at the outset that using our procedure to determine necessary conditions

no longer seems as profitable; generalizing the system model seems to have

weakened the derived necessary conditions.

Referring to the block diagram of the general communication system

provided in the first section, we write the system equations as follows.

sn g(InITn-1) ; ntS' n) n=Rn n(1

minimize E($(I n- Rn~k) IIn)
a n , Rn+k

We must now remember that a represents an M-ary valued symbol rather

than Just a binary valued one. The only change in the form of the above

equations from their previous values occurs in the error criteria where we

assume a delay of k inserted at the receiver.

The error criterion, E($(In - Rn+k) I~n) , involves an averaging

over all of the possible receiver outputs that can occur at time tn+k given

that In has been the system input. The presence of a noisy channel gen-

erally implies that this average is to be taken over all possible receiver out-

puts at time tn+k , and assuming that the sequence 1n has length (i + 1 ,

we see that there will be M(i+k+l) possible different receiver outputs to be

averaged over. If the channel had been noiseless, then the number of receiver

-28-
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outputs to be averaged over would only have been. Mk , which for zero k

reduces to unity as expected.

The formal optimization procedure is now very similar to that devel-

oped in the third and fourth sections for the binary system operating without

intentional delay. The essential distinction lies in the greatly increased num-

ber of alternatives now available for mutual comparison. At tn we must decide

which of M states to select for transmission or equivalently determined the

M disjoint and ex-haustive subsets of the real line, In(j) (j = 1,..., M)

where In (j) is given by:
In0 = (I n : E [ (In - Rn+k ) 1T,, I on = j]2an( ) lE[4(I n" Rn+k) ITn' or,= P P =e1s1'''M~j ()

less j

Solutions for Eq. 2 will then yield the optimum transmitter to be used in asso-

ciation with a given receiver. Arguments similar to those presented in the

binary case indicate that if we represent n (j) as a union of disjoint inter-

vals, then the endpoints of these intervals, Ln (j, ip) , must satisfy.

(3 p! J) E[ 4(Ln(j, ip)- Rnk -n, an = J]
n ~ (3)

= E•I~n(J, p) - n+k) I~n In I an

Unfortunately, Eq. 3 is only a weak and uninformative necessary condition for

the determination of In(j) .

The optimum receiver determination proceeds precisely as it did

earlier. The transmitter is assumed given, and we find by strict analogy with

our earlier results that

E(4(-(In" Rn+k) I;n+k) = . (4)
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Finally, we are required to consider the results of Eqs. 3 and 4 simultaneously,

and select that pair resulting in the minimum value of the error term stated

in Eq. 1.

The results stated above will become the results given in the previous

section when we replace M by 2 and thereby provide a more general formu-

lation of the digital communication problem. A special case of some interest

occurs when we consider the possibility of a noiseless channel and no delay.

Equations 3 and 4 then become:

'(Ln (ji) - Rn (J, ip )= :(Ln(jIip R n(p) ) for some (p j) (31)

E (I n - Rn ) I 0 (4,)

Observe that, if we take • to be in 0 or such that

( 1 ) > 4 (Z2 ) > - o if and only if I lI > 1 z21,

then there will be a unique solution to Eq. 3' , for every 2 given by

2Ln(j,p) : R (j) + Rn(p) (5)
where

L n(J, p) L Ln(j, ip)

and is unique.

The result expressed by Eq. 5 contains much irrelevant information.

If we return to the original inequality formulation as given by Eq. 2, we can

select those solutions of Eq. 5 which are important. For convenience we

order the receiver outputs as follows:
Rn (j) >Rn(i) if and onlyif >i . (6)

Using Eqs. 5 and 6 in Eq. 2 leads to the conclusion that In (j ) need only be

a simple interval located between tn (j - 1) below it, and nj(j + 1) above it,
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and A (j) contains the point Rn (j) . The upper end point of the interval

n (J) bisects the interval between Rn (j) and Rn (j + 1) , while the lower

endpoint of In(j) is just the upper endpolnt of fI - I) ; the only exceptions

to these rules are that the lower end point of In (I ) is minus infinity asid the

upperendpoint of I (M) is plus infinity.

n nn

Rn(l) Ln(l, 2) Rn(2) Ln(Z, 3) Rn(3)

TYPICAL TRANSMITTER ASSIGNMENT

(M =3)

Essentially, these conclusions were obtained by Lloyd (1] under the

restriction that g be convex and even, the channel be noiseless, and there

be no reconstruction delay. Insofar as our specific results stated immedi-

ately above also require the assumption of no delay and a noiseless channel,

we have only gained by solving this problem for a class of loss functions con-

taining the convex, even loss functions as a subset. These results can be

applied to the optimum M-level quantization problem and the connection be-

tween digital communication and quantization elucidated by means of the reali-

zation that the distribution of the random variable we wish to quantize is

equivalent to the conditional distribution of the input process conditioned upon

the past of the transmitted sequence; the two problems are very similar, al-

though the digital communication problem is somewhat more general.
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An extension to our work in different direction involves the considera-

tion of the design problem for a continuous parameter input stochastic process

or the attempt to transmit "analog" waveforms digitally by sampling them at

times ttnj and quantizing the sample values. The optimization problem may

then be formulated with the same system error criterion as used previously or

with a new one given by the time-weighted average of the previously employed

instantaneous criterion; the time weighted criterion might take the form:

t +1

System Error = w(t, tn)E[ (I(t)- R(t)) In dt for w> 0. (7)

t n

If we maintain the instantaneous criterion, then our earlier results

generalize to cover the possibility of an analog input in a direct manner.

Stating these readily verified results for the binary communication system,

we have:

Transmitter: E(-(L(t n R(tn)) Imn: n. ) 1

= E ($(L(tn) " R(tn) ntsn=l, 1;no) (8)

Receiver: E (s' (I(t) - R(t))I-' n = 0 for tn< t <tn+

If the channel is noiseless, and • is in class 0 , then Eq. 8 becomes

Transmitter: ZL(t) = R (t snon P , -- 1 ) + R (tn; an = -l , 7n.1) (8')
n i ' n-in n n-

Receiver: E(ý' (I(t) R(t)) I I 0) =0
n

Notice that we are only, interested in L (tn ; it is only at time tn that we

are required to transmit in a manner chosen to optimize the reconstruction of
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The design problem with the time-weighted criterion given in Eq. 7 has

thus far eluded successful analysis. In our work to date the transmission prob-

lem has in part meant the subdivision of a one (for noiseless channel trans-

mission without delay in reconstruction) or finite dimensional space into two

(for binary transmission) or more regions. Now we are required to attempt

the solution of this subdivision problem in an infinite dimensional function

space, and it is much more difficult. Befort closing, let us point out that

insofar as the transmitter design is concerned, the condition that we select

the transmitted state so as to *elect in turn the receiver output that minimizes

Eq. 7 is one which is capable of direct implementation for any given input sig-

nal; one just evaluates the error term given by Eq. 7 for the given input and

the two possible receiver outputs and selects that receiver output yielding the

least error. It is only the problem of an initial categorization of all inputs

into one of two sets that is difficult, due to the infinite dimensionality of the

relevant function space for the input process sample functions.
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APPENDIX

A SIMULATION EXAMPLE

If we wish to construct an optimum binary communication system for a

noiseless channel and a quadratic loss function given J independent sample

sequences of the input process {INJ) , then we must be able to estimate the

optimum feedback loop and receiver in the equivalent delta modulation system.

Our earlier work indicates that we must form estimators for the quantities

below and then solve the simultaneous equations; we assume that this solution

is unique, and, if not, that a search technique will inform us of this.

(R)

The maximumlikelihood and least mean-square estimator for the conditional

expectation resulting in the rechiver output is given by the arithmetic average

of those sample sequences at the time in question whose previous histories

satisfied the conditioning on the past. The equation for Ln can also be put

in a form suitable for estimation by using the receiver estimates. Thus, we

have:

. 1 1 A sm
nY In~jJ 1 n 5 n1U7A n 'n1)+Ii i

Jul n

For clarity of illustration, let us take a very specific example in which

our dictionary consists of four sequences, each three members long. The

specific sequences are given by

s5(1,3, -2) ; S2 = (-4, -2; 1) ; S3 = (0,1,p 2) ; S4= (-1,0,2)
(3)

-35-



TR399 -36-

The sketch below is a plot of these sequences.

TI1' T2 T
3

At T, we have no past information, so that 'L'1in found as the aver-
age of thos, above plus the average of those below divided by two, where in
the average all the sequences are used. -We assume that the PC lies between

11

53 and 4 Thenwe have:

Ave. Above.(. Ave. Below (3.O 0 Ave. of both 1.2-15) (4)

The trial C was between pero and nzegtive unity, and is above the check
value; therefore, we now move dow to the next interval between adjacent

samples, which io between-Je and 54 Repeating the above, we have:
Ave. Above •(O) ; Ave. Below (-5) ; Ave. ofBoths(-2.5) (5)A

The now check value of L , (- .5), falls in the range of the trial value
which. was from (-4) to (-Z.51) and thus is the estimated L1 ; l1 squall
(-2) .
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The receiver output corresponding to a received plus one, 41 (sI 1),

would then be given by the average above or (0) and the receiver output

corresponding to a minus one, I1 (el = " 1) , would be the average below

or (-5)

Let us now assume that a plus one was transmitted (a I I ) and we

are now at T2 . The only sequence that is to be omitted is S2 , which fell

below t .I Thus, at this time the only remaining sample values that are

acceptable, because of conditioning on the past, are (3, 1, 0) . Let us
A

assume that the trial L? (as = I ) is between one and three, or between S1

and S3 , and calculate as above:

Ave. Above = (3) ; Ave. Below =(½) ; Ave. Both :(l ) (6)

The check value falls into the same interval between samples as the trial value

and, therefore, 12 (1) equals 1 -1 . The receiver output corresponding then4
AAto 8 =, 1)' is given by the average of those above L. (a I ) and

as there is only one sample R. a, = 1, s = 1) equals 3. Similarly, the

receiver output for a transmitted chain (sI = 1, sz = - 1) , fi2( al =1, l),
1

would equal I

The procedure indicated above must then be carried out for all possible

transmitted binary sequences of length equal to the length of the sequences

being used (in our case 3). In general, at the nth sampling time we will have

n-l Ad n A
to calculate 2 l n and 2 receiver outputs, Rn

Finally, if we desire to determine the error that this design would

lead to in an actual application, we can proceed by taking additional samples

of the input and passing them through the system just built, and determine
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the resulting mean-squared errors. The average of these errors would yield

an estimate for the operating error of the estimated optimum delta modulation

system.

The above error includes both the estimation error and the quantization

error of normal delta modulation. While this is the desirable error with re-

gard to applications, we are still interested in determining the estimation

error alone as a guide to the number of samples we would require. If we

started out with N independent sample runs, we would tend to reduce the

number available at the nth step by approximately a factor of 2n and could

expect to have only N2" n acceptable samples to use in estimating receiver

and feedback loop outputs. However, since in any application we would know

the exact number of samples left, let us assume that there are J samples

that terminate above the level set and K samples that terminate below, and

we wish to estimate the error variance in the estimation of receiver output.

In particular, if we are interested in the upper reconstruction, we are con-

cerned with the j samples. The expression for the estimation error variance,

C, is given by

C=E (7)n I n) n) ITn]

where in Eq. 7 we use the unbiased estimator given by Eq. 2. Expansion of

Eq. 7 and algebraic manipulation yield

2 1
E ( I _'n ) + E(IiI I) -In-in)E (I. 1;ni. (8)

n ~ 11 ni(I1
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Now in Eq. 8 we make use of the independence of the samples to ractor the

expected value of a product of them and use the observation that the sample

averages are identical with those of the random variable representing the input,

In to find:

[E (1E2 I VA.(In n (9)

Equation 9 is the desired result, as it indicates that the estimation error vari-

ance decreases as the reciprocal of the increasing number of samples, ,

used in its calculation.
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